Newer
Older
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
+ * next request as soon as possible after the last one has been completed
+ * (in contrast, when a batch of requests is completed, a soft real-time
+ * application spends some time processing data).
+ *
+ * Unfortunately, the last filter may easily generate false positives if
+ * only bfqd->bfq_slice_idle is used as a reference time interval and one
+ * or both the following cases occur:
+ * 1) HZ is so low that the duration of a jiffy is comparable to or higher
+ * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
+ * HZ=100.
+ * 2) jiffies, instead of increasing at a constant rate, may stop increasing
+ * for a while, then suddenly 'jump' by several units to recover the lost
+ * increments. This seems to happen, e.g., inside virtual machines.
+ * To address this issue, we do not use as a reference time interval just
+ * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
+ * particular we add the minimum number of jiffies for which the filter
+ * seems to be quite precise also in embedded systems and KVM/QEMU virtual
+ * machines.
+ */
+static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+{
+ return max(bfqq->last_idle_bklogged +
+ HZ * bfqq->service_from_backlogged /
+ bfqd->bfq_wr_max_softrt_rate,
+ jiffies + bfqq->bfqd->bfq_slice_idle + 4);
+}
+
+/*
+ * Return the largest-possible time instant such that, for as long as possible,
+ * the current time will be lower than this time instant according to the macro
+ * time_is_before_jiffies().
+ */
+static unsigned long bfq_infinity_from_now(unsigned long now)
+{
+ return now + ULONG_MAX / 2;
+}
+
+/**
+ * bfq_bfqq_expire - expire a queue.
+ * @bfqd: device owning the queue.
+ * @bfqq: the queue to expire.
+ * @compensate: if true, compensate for the time spent idling.
+ * @reason: the reason causing the expiration.
+ *
+ *
+ * If the process associated to the queue is slow (i.e., seeky), or in
+ * case of budget timeout, or, finally, if it is async, we
+ * artificially charge it an entire budget (independently of the
+ * actual service it received). As a consequence, the queue will get
+ * higher timestamps than the correct ones upon reactivation, and
+ * hence it will be rescheduled as if it had received more service
+ * than what it actually received. In the end, this class of processes
+ * will receive less service in proportion to how slowly they consume
+ * their budgets (and hence how seriously they tend to lower the
+ * throughput).
+ *
+ * In contrast, when a queue expires because it has been idling for
+ * too much or because it exhausted its budget, we do not touch the
+ * amount of service it has received. Hence when the queue will be
+ * reactivated and its timestamps updated, the latter will be in sync
+ * with the actual service received by the queue until expiration.
+ *
+ * Charging a full budget to the first type of queues and the exact
+ * service to the others has the effect of using the WF2Q+ policy to
+ * schedule the former on a timeslice basis, without violating the
+ * service domain guarantees of the latter.
+ */
+static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ bool compensate,
+ enum bfqq_expiration reason)
+{
+ bool slow;
+
+ BUG_ON(bfqq != bfqd->in_service_queue);
+
+ /*
+ * Update disk peak rate for autotuning and check whether the
+ * process is slow (see bfq_update_peak_rate).
+ */
+ slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);
+
+ /*
+ * As above explained, 'punish' slow (i.e., seeky), timed-out
+ * and async queues, to favor sequential sync workloads.
+ *
+ * Processes doing I/O in the slower disk zones will tend to be
+ * slow(er) even if not seeky. Hence, since the estimated peak
+ * rate is actually an average over the disk surface, these
+ * processes may timeout just for bad luck. To avoid punishing
+ * them we do not charge a full budget to a process that
+ * succeeded in consuming at least 2/3 of its budget.
+ */
+ if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3))
+ bfq_bfqq_charge_full_budget(bfqq);
+
+ bfqq->service_from_backlogged += bfqq->entity.service;
+
+ if (BFQQ_SEEKY(bfqq) && reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
+ !bfq_bfqq_constantly_seeky(bfqq)) {
+ bfq_mark_bfqq_constantly_seeky(bfqq);
+ if (!blk_queue_nonrot(bfqd->queue))
+ bfqd->const_seeky_busy_in_flight_queues++;
+ }
+
+ if (reason == BFQ_BFQQ_TOO_IDLE &&
+ bfqq->entity.service <= 2 * bfqq->entity.budget / 10)
+ bfq_clear_bfqq_IO_bound(bfqq);
+
+ if (bfqd->low_latency && bfqq->wr_coeff == 1)
+ bfqq->last_wr_start_finish = jiffies;
+
+ if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
+ RB_EMPTY_ROOT(&bfqq->sort_list)) {
+ /*
+ * If we get here, and there are no outstanding requests,
+ * then the request pattern is isochronous (see the comments
+ * to the function bfq_bfqq_softrt_next_start()). Hence we
+ * can compute soft_rt_next_start. If, instead, the queue
+ * still has outstanding requests, then we have to wait
+ * for the completion of all the outstanding requests to
+ * discover whether the request pattern is actually
+ * isochronous.
+ */
+ if (bfqq->dispatched == 0)
+ bfqq->soft_rt_next_start =
+ bfq_bfqq_softrt_next_start(bfqd, bfqq);
+ else {
+ /*
+ * The application is still waiting for the
+ * completion of one or more requests:
+ * prevent it from possibly being incorrectly
+ * deemed as soft real-time by setting its
+ * soft_rt_next_start to infinity. In fact,
+ * without this assignment, the application
+ * would be incorrectly deemed as soft
+ * real-time if:
+ * 1) it issued a new request before the
+ * completion of all its in-flight
+ * requests, and
+ * 2) at that time, its soft_rt_next_start
+ * happened to be in the past.
+ */
+ bfqq->soft_rt_next_start =
+ bfq_infinity_from_now(jiffies);
+ /*
+ * Schedule an update of soft_rt_next_start to when
+ * the task may be discovered to be isochronous.
+ */
+ bfq_mark_bfqq_softrt_update(bfqq);
+ }
+ }
+
+ bfq_log_bfqq(bfqd, bfqq,
+ "expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
+ slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
+
+ /*
+ * Increase, decrease or leave budget unchanged according to
+ * reason.
+ */
+ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
+ __bfq_bfqq_expire(bfqd, bfqq);
+}
+
+/*
+ * Budget timeout is not implemented through a dedicated timer, but
+ * just checked on request arrivals and completions, as well as on
+ * idle timer expirations.
+ */
+static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
+{
+ if (bfq_bfqq_budget_new(bfqq) ||
+ time_before(jiffies, bfqq->budget_timeout))
+ return false;
+ return true;
+}
+
+/*
+ * If we expire a queue that is waiting for the arrival of a new
+ * request, we may prevent the fictitious timestamp back-shifting that
+ * allows the guarantees of the queue to be preserved (see [1] for
+ * this tricky aspect). Hence we return true only if this condition
+ * does not hold, or if the queue is slow enough to deserve only to be
+ * kicked off for preserving a high throughput.
+*/
+static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
+{
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
+ "may_budget_timeout: wait_request %d left %d timeout %d",
+ bfq_bfqq_wait_request(bfqq),
+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
+ bfq_bfqq_budget_timeout(bfqq));
+
+ return (!bfq_bfqq_wait_request(bfqq) ||
+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
+ &&
+ bfq_bfqq_budget_timeout(bfqq);
+}
+
+/*
+ * For a queue that becomes empty, device idling is allowed only if
+ * this function returns true for that queue. As a consequence, since
+ * device idling plays a critical role for both throughput boosting
+ * and service guarantees, the return value of this function plays a
+ * critical role as well.
+ *
+ * In a nutshell, this function returns true only if idling is
+ * beneficial for throughput or, even if detrimental for throughput,
+ * idling is however necessary to preserve service guarantees (low
+ * latency, desired throughput distribution, ...). In particular, on
+ * NCQ-capable devices, this function tries to return false, so as to
+ * help keep the drives' internal queues full, whenever this helps the
+ * device boost the throughput without causing any service-guarantee
+ * issue.
+ *
+ * In more detail, the return value of this function is obtained by,
+ * first, computing a number of boolean variables that take into
+ * account throughput and service-guarantee issues, and, then,
+ * combining these variables in a logical expression. Most of the
+ * issues taken into account are not trivial. We discuss these issues
+ * while introducing the variables.
+ */
+static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+{
+ struct bfq_data *bfqd = bfqq->bfqd;
+ bool idling_boosts_thr, idling_boosts_thr_without_issues,
+ all_queues_seeky, on_hdd_and_not_all_queues_seeky,
+ idling_needed_for_service_guarantees,
+ asymmetric_scenario;
+
+ /*
+ * The next variable takes into account the cases where idling
+ * boosts the throughput.
+ *
+ * The value of the variable is computed considering, first, that
+ * idling is virtually always beneficial for the throughput if:
+ * (a) the device is not NCQ-capable, or
+ * (b) regardless of the presence of NCQ, the device is rotational
+ * and the request pattern for bfqq is I/O-bound and sequential.
+ *
+ * Secondly, and in contrast to the above item (b), idling an
+ * NCQ-capable flash-based device would not boost the
+ * throughput even with sequential I/O; rather it would lower
+ * the throughput in proportion to how fast the device
+ * is. Accordingly, the next variable is true if any of the
+ * above conditions (a) and (b) is true, and, in particular,
+ * happens to be false if bfqd is an NCQ-capable flash-based
+ * device.
+ */
+ idling_boosts_thr = !bfqd->hw_tag ||
+ (!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) &&
+ bfq_bfqq_idle_window(bfqq));
+
+ /*
+ * The value of the next variable,
+ * idling_boosts_thr_without_issues, is equal to that of
+ * idling_boosts_thr, unless a special case holds. In this
+ * special case, described below, idling may cause problems to
+ * weight-raised queues.
+ *
+ * When the request pool is saturated (e.g., in the presence
+ * of write hogs), if the processes associated with
+ * non-weight-raised queues ask for requests at a lower rate,
+ * then processes associated with weight-raised queues have a
+ * higher probability to get a request from the pool
+ * immediately (or at least soon) when they need one. Thus
+ * they have a higher probability to actually get a fraction
+ * of the device throughput proportional to their high
+ * weight. This is especially true with NCQ-capable drives,
+ * which enqueue several requests in advance, and further
+ * reorder internally-queued requests.
+ *
+ * For this reason, we force to false the value of
+ * idling_boosts_thr_without_issues if there are weight-raised
+ * busy queues. In this case, and if bfqq is not weight-raised,
+ * this guarantees that the device is not idled for bfqq (if,
+ * instead, bfqq is weight-raised, then idling will be
+ * guaranteed by another variable, see below). Combined with
+ * the timestamping rules of BFQ (see [1] for details), this
+ * behavior causes bfqq, and hence any sync non-weight-raised
+ * queue, to get a lower number of requests served, and thus
+ * to ask for a lower number of requests from the request
+ * pool, before the busy weight-raised queues get served
+ * again. This often mitigates starvation problems in the
+ * presence of heavy write workloads and NCQ, thereby
+ * guaranteeing a higher application and system responsiveness
+ * in these hostile scenarios.
+ */
+ idling_boosts_thr_without_issues = idling_boosts_thr &&
+ bfqd->wr_busy_queues == 0;
+
+ /*
+ * There are then two cases where idling must be performed not
+ * for throughput concerns, but to preserve service
+ * guarantees. In the description of these cases, we say, for
+ * short, that a queue is sequential/random if the process
+ * associated to the queue issues sequential/random requests
+ * (in the second case the queue may be tagged as seeky or
+ * even constantly_seeky).
+ *
+ * To introduce the first case, we note that, since
+ * bfq_bfqq_idle_window(bfqq) is false if the device is
+ * NCQ-capable and bfqq is random (see
+ * bfq_update_idle_window()), then, from the above two
+ * assignments it follows that
+ * idling_boosts_thr_without_issues is false if the device is
+ * NCQ-capable and bfqq is random. Therefore, for this case,
+ * device idling would never be allowed if we used just
+ * idling_boosts_thr_without_issues to decide whether to allow
+ * it. And, beneficially, this would imply that throughput
+ * would always be boosted also with random I/O on NCQ-capable
+ * HDDs.
+ *
+ * But we must be careful on this point, to avoid an unfair
+ * treatment for bfqq. In fact, because of the same above
+ * assignments, idling_boosts_thr_without_issues is, on the
+ * other hand, true if 1) the device is an HDD and bfqq is
+ * sequential, and 2) there are no busy weight-raised
+ * queues. As a consequence, if we used just
+ * idling_boosts_thr_without_issues to decide whether to idle
+ * the device, then with an HDD we might easily bump into a
+ * scenario where queues that are sequential and I/O-bound
+ * would enjoy idling, whereas random queues would not. The
+ * latter might then get a low share of the device throughput,
+ * simply because the former would get many requests served
+ * after being set as in service, while the latter would not.
+ *
+ * To address this issue, we start by setting to true a
+ * sentinel variable, on_hdd_and_not_all_queues_seeky, if the
+ * device is rotational and not all queues with pending or
+ * in-flight requests are constantly seeky (i.e., there are
+ * active sequential queues, and bfqq might then be mistreated
+ * if it does not enjoy idling because it is random).
+ */
+ all_queues_seeky = bfq_bfqq_constantly_seeky(bfqq) &&
+ bfqd->busy_in_flight_queues ==
+ bfqd->const_seeky_busy_in_flight_queues;
+
+ on_hdd_and_not_all_queues_seeky =
+ !blk_queue_nonrot(bfqd->queue) && !all_queues_seeky;
+
+ /*
+ * To introduce the second case where idling needs to be
+ * performed to preserve service guarantees, we can note that
+ * allowing the drive to enqueue more than one request at a
+ * time, and hence delegating de facto final scheduling
+ * decisions to the drive's internal scheduler, causes loss of
+ * control on the actual request service order. In particular,
+ * the critical situation is when requests from different
+ * processes happens to be present, at the same time, in the
+ * internal queue(s) of the drive. In such a situation, the
+ * drive, by deciding the service order of the
+ * internally-queued requests, does determine also the actual
+ * throughput distribution among these processes. But the
+ * drive typically has no notion or concern about per-process
+ * throughput distribution, and makes its decisions only on a
+ * per-request basis. Therefore, the service distribution
+ * enforced by the drive's internal scheduler is likely to
+ * coincide with the desired device-throughput distribution
+ * only in a completely symmetric scenario where:
+ * (i) each of these processes must get the same throughput as
+ * the others;
+ * (ii) all these processes have the same I/O pattern
+ * (either sequential or random).
+ * In fact, in such a scenario, the drive will tend to treat
+ * the requests of each of these processes in about the same
+ * way as the requests of the others, and thus to provide
+ * each of these processes with about the same throughput
+ * (which is exactly the desired throughput distribution). In
+ * contrast, in any asymmetric scenario, device idling is
+ * certainly needed to guarantee that bfqq receives its
+ * assigned fraction of the device throughput (see [1] for
+ * details).
+ *
+ * We address this issue by controlling, actually, only the
+ * symmetry sub-condition (i), i.e., provided that
+ * sub-condition (i) holds, idling is not performed,
+ * regardless of whether sub-condition (ii) holds. In other
+ * words, only if sub-condition (i) holds, then idling is
+ * allowed, and the device tends to be prevented from queueing
+ * many requests, possibly of several processes. The reason
+ * for not controlling also sub-condition (ii) is that, first,
+ * in the case of an HDD, the asymmetry in terms of types of
+ * I/O patterns is already taken in to account in the above
+ * sentinel variable
+ * on_hdd_and_not_all_queues_seeky. Secondly, in the case of a
+ * flash-based device, we prefer however to privilege
+ * throughput (and idling lowers throughput for this type of
+ * devices), for the following reasons:
+ * 1) differently from HDDs, the service time of random
+ * requests is not orders of magnitudes lower than the service
+ * time of sequential requests; thus, even if processes doing
+ * sequential I/O get a preferential treatment with respect to
+ * others doing random I/O, the consequences are not as
+ * dramatic as with HDDs;
+ * 2) if a process doing random I/O does need strong
+ * throughput guarantees, it is hopefully already being
+ * weight-raised, or the user is likely to have assigned it a
+ * higher weight than the other processes (and thus
+ * sub-condition (i) is likely to be false, which triggers
+ * idling).
+ *
+ * According to the above considerations, the next variable is
+ * true (only) if sub-condition (i) holds. To compute the
+ * value of this variable, we not only use the return value of
+ * the function bfq_symmetric_scenario(), but also check
+ * whether bfqq is being weight-raised, because
+ * bfq_symmetric_scenario() does not take into account also
+ * weight-raised queues (see comments to
+ * bfq_weights_tree_add()).
+ *
+ * As a side note, it is worth considering that the above
+ * device-idling countermeasures may however fail in the
+ * following unlucky scenario: if idling is (correctly)
+ * disabled in a time period during which all symmetry
+ * sub-conditions hold, and hence the device is allowed to
+ * enqueue many requests, but at some later point in time some
+ * sub-condition stops to hold, then it may become impossible
+ * to let requests be served in the desired order until all
+ * the requests already queued in the device have been served.
+ */
+ asymmetric_scenario = bfqq->wr_coeff > 1 ||
+ !bfq_symmetric_scenario(bfqd);
+
+ /*
+ * Finally, there is a case where maximizing throughput is the
+ * best choice even if it may cause unfairness toward
+ * bfqq. Such a case is when bfqq became active in a burst of
+ * queue activations. Queues that became active during a large
+ * burst benefit only from throughput, as discussed in the
+ * comments to bfq_handle_burst. Thus, if bfqq became active
+ * in a burst and not idling the device maximizes throughput,
+ * then the device must no be idled, because not idling the
+ * device provides bfqq and all other queues in the burst with
+ * maximum benefit. Combining this and the two cases above, we
+ * can now establish when idling is actually needed to
+ * preserve service guarantees.
+ */
+ idling_needed_for_service_guarantees =
+ (on_hdd_and_not_all_queues_seeky || asymmetric_scenario) &&
+ !bfq_bfqq_in_large_burst(bfqq);
+
+ /*
+ * We have now all the components we need to compute the return
+ * value of the function, which is true only if both the following
+ * conditions hold:
+ * 1) bfqq is sync, because idling make sense only for sync queues;
+ * 2) idling either boosts the throughput (without issues), or
+ * is necessary to preserve service guarantees.
+ */
+ return bfq_bfqq_sync(bfqq) &&
+ (idling_boosts_thr_without_issues ||
+ idling_needed_for_service_guarantees);
+}
+
+/*
+ * If the in-service queue is empty but the function bfq_bfqq_may_idle
+ * returns true, then:
+ * 1) the queue must remain in service and cannot be expired, and
+ * 2) the device must be idled to wait for the possible arrival of a new
+ * request for the queue.
+ * See the comments to the function bfq_bfqq_may_idle for the reasons
+ * why performing device idling is the best choice to boost the throughput
+ * and preserve service guarantees when bfq_bfqq_may_idle itself
+ * returns true.
+ */
+static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
+{
+ struct bfq_data *bfqd = bfqq->bfqd;
+
+ return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
+ bfq_bfqq_may_idle(bfqq);
+}
+
+/*
+ * Select a queue for service. If we have a current queue in service,
+ * check whether to continue servicing it, or retrieve and set a new one.
+ */
+static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+{
+ struct bfq_queue *bfqq;
+ struct request *next_rq;
+ enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
+
+ bfqq = bfqd->in_service_queue;
+ if (!bfqq)
+ goto new_queue;
+
+ bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
+
+ if (bfq_may_expire_for_budg_timeout(bfqq) &&
+ !timer_pending(&bfqd->idle_slice_timer) &&
+ !bfq_bfqq_must_idle(bfqq))
+ goto expire;
+
+ next_rq = bfqq->next_rq;
+ /*
+ * If bfqq has requests queued and it has enough budget left to
+ * serve them, keep the queue, otherwise expire it.
+ */
+ if (next_rq) {
+ if (bfq_serv_to_charge(next_rq, bfqq) >
+ bfq_bfqq_budget_left(bfqq)) {
+ reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
+ goto expire;
+ } else {
+ /*
+ * The idle timer may be pending because we may
+ * not disable disk idling even when a new request
+ * arrives.
+ */
+ if (timer_pending(&bfqd->idle_slice_timer)) {
+ /*
+ * If we get here: 1) at least a new request
+ * has arrived but we have not disabled the
+ * timer because the request was too small,
+ * 2) then the block layer has unplugged
+ * the device, causing the dispatch to be
+ * invoked.
+ *
+ * Since the device is unplugged, now the
+ * requests are probably large enough to
+ * provide a reasonable throughput.
+ * So we disable idling.
+ */
+ bfq_clear_bfqq_wait_request(bfqq);
+ del_timer(&bfqd->idle_slice_timer);
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ bfqg_stats_update_idle_time(bfqq_group(bfqq));
+#endif
+ }
+ goto keep_queue;
+ }
+ }
+
+ /*
+ * No requests pending. However, if the in-service queue is idling
+ * for a new request, or has requests waiting for a completion and
+ * may idle after their completion, then keep it anyway.
+ */
+ if (timer_pending(&bfqd->idle_slice_timer) ||
+ (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
+ bfqq = NULL;
+ goto keep_queue;
+ }
+
+ reason = BFQ_BFQQ_NO_MORE_REQUESTS;
+expire:
+ bfq_bfqq_expire(bfqd, bfqq, false, reason);
+new_queue:
+ bfqq = bfq_set_in_service_queue(bfqd);
+ bfq_log(bfqd, "select_queue: new queue %d returned",
+ bfqq ? bfqq->pid : 0);
+keep_queue:
+ return bfqq;
+}
+
+static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+
+ if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
+ bfq_log_bfqq(bfqd, bfqq,
+ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
+ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
+ jiffies_to_msecs(bfqq->wr_cur_max_time),
+ bfqq->wr_coeff,
+ bfqq->entity.weight, bfqq->entity.orig_weight);
+
+ BUG_ON(bfqq != bfqd->in_service_queue && entity->weight !=
+ entity->orig_weight * bfqq->wr_coeff);
+ if (entity->prio_changed)
+ bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
+
+ /*
+ * If the queue was activated in a burst, or
+ * too much time has elapsed from the beginning
+ * of this weight-raising period, then end weight
+ * raising.
+ */
+ if (bfq_bfqq_in_large_burst(bfqq) ||
+ time_is_before_jiffies(bfqq->last_wr_start_finish +
+ bfqq->wr_cur_max_time)) {
+ bfqq->last_wr_start_finish = jiffies;
+ bfq_log_bfqq(bfqd, bfqq,
+ "wrais ending at %lu, rais_max_time %u",
+ bfqq->last_wr_start_finish,
+ jiffies_to_msecs(bfqq->wr_cur_max_time));
+ bfq_bfqq_end_wr(bfqq);
+ }
+ }
+ /* Update weight both if it must be raised and if it must be lowered */
+ if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
+ __bfq_entity_update_weight_prio(
+ bfq_entity_service_tree(entity),
+ entity);
+}
+
+/*
+ * Dispatch one request from bfqq, moving it to the request queue
+ * dispatch list.
+ */
+static int bfq_dispatch_request(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+{
+ int dispatched = 0;
+ struct request *rq;
+ unsigned long service_to_charge;
+
+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
+
+ /* Follow expired path, else get first next available. */
+ rq = bfq_check_fifo(bfqq);
+ if (!rq)
+ rq = bfqq->next_rq;
+ service_to_charge = bfq_serv_to_charge(rq, bfqq);
+
+ if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
+ /*
+ * This may happen if the next rq is chosen in fifo order
+ * instead of sector order. The budget is properly
+ * dimensioned to be always sufficient to serve the next
+ * request only if it is chosen in sector order. The reason
+ * is that it would be quite inefficient and little useful
+ * to always make sure that the budget is large enough to
+ * serve even the possible next rq in fifo order.
+ * In fact, requests are seldom served in fifo order.
+ *
+ * Expire the queue for budget exhaustion, and make sure
+ * that the next act_budget is enough to serve the next
+ * request, even if it comes from the fifo expired path.
+ */
+ bfqq->next_rq = rq;
+ /*
+ * Since this dispatch is failed, make sure that
+ * a new one will be performed
+ */
+ if (!bfqd->rq_in_driver)
+ bfq_schedule_dispatch(bfqd);
+ goto expire;
+ }
+
+ /* Finally, insert request into driver dispatch list. */
+ bfq_bfqq_served(bfqq, service_to_charge);
+ bfq_dispatch_insert(bfqd->queue, rq);
+
+ bfq_update_wr_data(bfqd, bfqq);
+
+ bfq_log_bfqq(bfqd, bfqq,
+ "dispatched %u sec req (%llu), budg left %d",
+ blk_rq_sectors(rq),
+ (unsigned long long) blk_rq_pos(rq),
+ bfq_bfqq_budget_left(bfqq));
+
+ dispatched++;
+
+ if (!bfqd->in_service_bic) {
+ atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
+ bfqd->in_service_bic = RQ_BIC(rq);
+ }
+
+ if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
+ dispatched >= bfqd->bfq_max_budget_async_rq) ||
+ bfq_class_idle(bfqq)))
+ goto expire;
+
+ return dispatched;
+
+expire:
+ bfq_bfqq_expire(bfqd, bfqq, false, BFQ_BFQQ_BUDGET_EXHAUSTED);
+ return dispatched;
+}
+
+static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
+{
+ int dispatched = 0;
+
+ while (bfqq->next_rq) {
+ bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
+ dispatched++;
+ }
+
+ BUG_ON(!list_empty(&bfqq->fifo));
+ return dispatched;
+}
+
+/*
+ * Drain our current requests.
+ * Used for barriers and when switching io schedulers on-the-fly.
+ */
+static int bfq_forced_dispatch(struct bfq_data *bfqd)
+{
+ struct bfq_queue *bfqq, *n;
+ struct bfq_service_tree *st;
+ int dispatched = 0;
+
+ bfqq = bfqd->in_service_queue;
+ if (bfqq)
+ __bfq_bfqq_expire(bfqd, bfqq);
+
+ /*
+ * Loop through classes, and be careful to leave the scheduler
+ * in a consistent state, as feedback mechanisms and vtime
+ * updates cannot be disabled during the process.
+ */
+ list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
+ st = bfq_entity_service_tree(&bfqq->entity);
+
+ dispatched += __bfq_forced_dispatch_bfqq(bfqq);
+ bfqq->max_budget = bfq_max_budget(bfqd);
+
+ bfq_forget_idle(st);
+ }
+
+ BUG_ON(bfqd->busy_queues != 0);
+
+ return dispatched;
+}
+
+static int bfq_dispatch_requests(struct request_queue *q, int force)
+{
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct bfq_queue *bfqq;
+ int max_dispatch;
+
+ bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
+ if (bfqd->busy_queues == 0)
+ return 0;
+
+ if (unlikely(force))
+ return bfq_forced_dispatch(bfqd);
+
+ bfqq = bfq_select_queue(bfqd);
+ if (!bfqq)
+ return 0;
+
+ if (bfq_class_idle(bfqq))
+ max_dispatch = 1;
+
+ if (!bfq_bfqq_sync(bfqq))
+ max_dispatch = bfqd->bfq_max_budget_async_rq;
+
+ if (!bfq_bfqq_sync(bfqq) && bfqq->dispatched >= max_dispatch) {
+ if (bfqd->busy_queues > 1)
+ return 0;
+ if (bfqq->dispatched >= 4 * max_dispatch)
+ return 0;
+ }
+
+ if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
+ return 0;
+
+ bfq_clear_bfqq_wait_request(bfqq);
+ BUG_ON(timer_pending(&bfqd->idle_slice_timer));
+
+ if (!bfq_dispatch_request(bfqd, bfqq))
+ return 0;
+
+ bfq_log_bfqq(bfqd, bfqq, "dispatched %s request",
+ bfq_bfqq_sync(bfqq) ? "sync" : "async");
+
+ return 1;
+}
+
+/*
+ * Task holds one reference to the queue, dropped when task exits. Each rq
+ * in-flight on this queue also holds a reference, dropped when rq is freed.
+ *
+ * Queue lock must be held here.
+ */
+static void bfq_put_queue(struct bfq_queue *bfqq)
+{
+ struct bfq_data *bfqd = bfqq->bfqd;
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ struct bfq_group *bfqg = bfqq_group(bfqq);
+#endif
+
+ BUG_ON(atomic_read(&bfqq->ref) <= 0);
+
+ bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
+ atomic_read(&bfqq->ref));
+ if (!atomic_dec_and_test(&bfqq->ref))
+ return;
+
+ BUG_ON(rb_first(&bfqq->sort_list));
+ BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
+ BUG_ON(bfqq->entity.tree);
+ BUG_ON(bfq_bfqq_busy(bfqq));
+ BUG_ON(bfqd->in_service_queue == bfqq);
+
+ if (bfq_bfqq_sync(bfqq))
+ /*
+ * The fact that this queue is being destroyed does not
+ * invalidate the fact that this queue may have been
+ * activated during the current burst. As a consequence,
+ * although the queue does not exist anymore, and hence
+ * needs to be removed from the burst list if there,
+ * the burst size has not to be decremented.
+ */
+ hlist_del_init(&bfqq->burst_list_node);
+
+ bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
+
+ kmem_cache_free(bfq_pool, bfqq);
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ bfqg_put(bfqg);
+#endif
+}
+
+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+{
+ if (bfqq == bfqd->in_service_queue) {
+ __bfq_bfqq_expire(bfqd, bfqq);
+ bfq_schedule_dispatch(bfqd);
+ }
+
+ bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
+ atomic_read(&bfqq->ref));
+
+ bfq_put_queue(bfqq);
+}
+
+static void bfq_init_icq(struct io_cq *icq)
+{
+ struct bfq_io_cq *bic = icq_to_bic(icq);
+
+ bic->ttime.last_end_request = jiffies;
+}
+
+static void bfq_exit_icq(struct io_cq *icq)
+{
+ struct bfq_io_cq *bic = icq_to_bic(icq);
+ struct bfq_data *bfqd = bic_to_bfqd(bic);
+
+ if (bic->bfqq[BLK_RW_ASYNC]) {
+ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]);
+ bic->bfqq[BLK_RW_ASYNC] = NULL;
+ }
+
+ if (bic->bfqq[BLK_RW_SYNC]) {
+ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
+ bic->bfqq[BLK_RW_SYNC] = NULL;
+ }
+}
+
+/*
+ * Update the entity prio values; note that the new values will not
+ * be used until the next (re)activation.
+ */
+static void
+bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+{
+ struct task_struct *tsk = current;
+ int ioprio_class;
+
+ ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
+ switch (ioprio_class) {
+ default:
+ dev_err(bfqq->bfqd->queue->backing_dev_info.dev,
+ "bfq: bad prio class %d\n", ioprio_class);
+ case IOPRIO_CLASS_NONE:
+ /*
+ * No prio set, inherit CPU scheduling settings.
+ */
+ bfqq->new_ioprio = task_nice_ioprio(tsk);
+ bfqq->new_ioprio_class = task_nice_ioclass(tsk);
+ break;
+ case IOPRIO_CLASS_RT:
+ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
+ bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
+ break;
+ case IOPRIO_CLASS_BE:
+ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
+ bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
+ break;
+ case IOPRIO_CLASS_IDLE:
+ bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
+ bfqq->new_ioprio = 7;
+ bfq_clear_bfqq_idle_window(bfqq);
+ break;
+ }
+
+ if (bfqq->new_ioprio < 0 || bfqq->new_ioprio >= IOPRIO_BE_NR) {
+ pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
+ bfqq->new_ioprio);
+ BUG();
+ }
+
+ bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
+ bfqq->entity.prio_changed = 1;
+}
+
+static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
+{
+ struct bfq_data *bfqd;
+ struct bfq_queue *bfqq, *new_bfqq;
+ unsigned long uninitialized_var(flags);
+ int ioprio = bic->icq.ioc->ioprio;
+
+ bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
+ &flags);
+ /*
+ * This condition may trigger on a newly created bic, be sure to
+ * drop the lock before returning.
+ */
+ if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
+ goto out;
+
+ bic->ioprio = ioprio;
+
+ bfqq = bic->bfqq[BLK_RW_ASYNC];
+ if (bfqq) {
+ new_bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic,
+ GFP_ATOMIC);
+ if (new_bfqq) {
+ bic->bfqq[BLK_RW_ASYNC] = new_bfqq;
+ bfq_log_bfqq(bfqd, bfqq,
+ "check_ioprio_change: bfqq %p %d",
+ bfqq, atomic_read(&bfqq->ref));
+ bfq_put_queue(bfqq);
+ }
+ }
+
+ bfqq = bic->bfqq[BLK_RW_SYNC];
+ if (bfqq)
+ bfq_set_next_ioprio_data(bfqq, bic);
+
+out:
+ bfq_put_bfqd_unlock(bfqd, &flags);
+}
+
+static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ struct bfq_io_cq *bic, pid_t pid, int is_sync)
+{
+ RB_CLEAR_NODE(&bfqq->entity.rb_node);
+ INIT_LIST_HEAD(&bfqq->fifo);
+ INIT_HLIST_NODE(&bfqq->burst_list_node);
+
+ atomic_set(&bfqq->ref, 0);
+ bfqq->bfqd = bfqd;
+
+ if (bic)
+ bfq_set_next_ioprio_data(bfqq, bic);
+
+ if (is_sync) {
+ if (!bfq_class_idle(bfqq))
+ bfq_mark_bfqq_idle_window(bfqq);
+ bfq_mark_bfqq_sync(bfqq);
+ } else
+ bfq_clear_bfqq_sync(bfqq);
+ bfq_mark_bfqq_IO_bound(bfqq);
+
+ /* Tentative initial value to trade off between thr and lat */
+ bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
+ bfqq->pid = pid;
+
+ bfqq->wr_coeff = 1;
+ bfqq->last_wr_start_finish = 0;
+ /*
+ * Set to the value for which bfqq will not be deemed as
+ * soft rt when it becomes backlogged.
+ */
+ bfqq->soft_rt_next_start = bfq_infinity_from_now(jiffies);
+}
+
+static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
+ struct bio *bio, int is_sync,
+ struct bfq_io_cq *bic,
+ gfp_t gfp_mask)
+{
+ struct bfq_group *bfqg;
+ struct bfq_queue *bfqq, *new_bfqq = NULL;
+ struct blkcg *blkcg;
+
+retry:
+ rcu_read_lock();
+
+ blkcg = bio_blkcg(bio);
+ bfqg = bfq_find_alloc_group(bfqd, blkcg);
+ /* bic always exists here */
+ bfqq = bic_to_bfqq(bic, is_sync);
+
+ /*
+ * Always try a new alloc if we fall back to the OOM bfqq
+ * originally, since it should just be a temporary situation.
+ */
+ if (!bfqq || bfqq == &bfqd->oom_bfqq) {
+ bfqq = NULL;
+ if (new_bfqq) {
+ bfqq = new_bfqq;
+ new_bfqq = NULL;
+ } else if (gfpflags_allow_blocking(gfp_mask)) {
+ rcu_read_unlock();
+ spin_unlock_irq(bfqd->queue->queue_lock);
+ new_bfqq = kmem_cache_alloc_node(bfq_pool,
+ gfp_mask | __GFP_ZERO,
+ bfqd->queue->node);